Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 38(9): 1325-1329, Sept. 2005. ilus, tab, graf
Article in English | LILACS | ID: lil-408359

ABSTRACT

The complete spectrum of estrogen vascular effects remains unclear. In particular, estrogen effects in the vascular response to profound injury in males have not been explored in detail. Therefore, we submitted 44 male New Zealand rabbits weighing 3.4 ± 0.6 kg to overdistention balloon injury of the right iliac artery. Rabbits were given 17ß-estradiol (5.45 æmol/day, sc) or vehicle for 7 days before and 14 days after injury, when the arteries were examined by post-mortem histomorphometry. Arteriographic caliber was assessed in vivo at baseline and before sacrifice. On day 14 after injury, in vivo arteriographic caliber (baseline = 2.44 ± 0.43 mm) was decreased by 23.1 ± 0.1 percent in controls and by 44.5 ± 0.1 percent in estrogen-treated rabbits (P < 0.001). Neither the neointimal area nor the neointima/media area ratio changed after estrogen treatment. Collagen fraction was increased in the media and neointima of estrogen-treated rabbits vs control (1.38 ± 1.30 vs 0.35 ± 0.67, respectively, P = 0.01). Taken together, these findings suggest that estrogen increased negative vascular remodeling. Transcription of endothelial and inducible nitric oxide synthases (eNOS and iNOS) was analyzed by RT-PCR. eNOS mRNA expression was marginally increased after estrogen (P = 0.07) and injury. iNOS mRNA was increased 2- to 3-fold on day 14 after injury. With estrogen treatment, iNOS mRNA increased in uninjured arteries and exhibited a further 5.5-fold increase after injury. We concluded that estrogen increased lumen loss after balloon injury in male rabbits, likely by increased negative remodeling, which may be related to increased iNOS transcriptional rates.


Subject(s)
Animals , Male , Rabbits , Estradiol/pharmacology , Iliac Artery/injuries , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Tunica Intima/drug effects , Angiography , Angioplasty, Balloon , Collagen/drug effects , Iliac Artery/drug effects , Iliac Artery/enzymology , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/analysis , Tunica Intima/enzymology
2.
Braz. j. med. biol. res ; 37(9): 1313-1320, Sept. 2004. ilus, tab, graf
Article in English | LILACS | ID: lil-365219

ABSTRACT

The objective of the present study was to determine the relationship between nitric oxide synthases (NOS) and heart failure in cardiac tissue from patients with and without cardiac decompensation. Right atrial tissue was excised from patients with coronary artery disease (CAD) and left ventricular ejection fraction (LVEF) <35 percent (N = 10), and from patients with CAD and LVEF >60 percent (N = 10) during cardiac surgery. NOS activity was measured by the conversion of L-[H ]-arginine to L-[H ]-citrulline. Gene expression was quantified by the competitive reverse transcription-polymerase chain reaction. Both endothelial NOS (eNOS) activity and expression were significantly reduced in failing hearts compared to non-failing hearts: 0.36 ± 0.18 vs 1.51 ± 0.31 pmol mg-1 min-1 (P < 0.0001) and 0.37 ± 0.08 vs 0.78 ± 0.09 relative cDNA absorbance at 320 nm (P < 0.0001), respectively. In contrast, inducible NOS (iNOS) activity and expression were significantly higher in failing hearts than in non-failing hearts: 4.00 ± 0.90 vs 1.54 ± 0.65 pmol mg-1 min-1 (P < 0.0001) and 2.19 ± 0.27 vs 1.43 ± 0.13 cDNA absorbance at 320 nm (P < 0.0001), respectively. We conclude that heart failure down-regulates both eNOS activity and expression in cardiac tissue from patients with LVEF <35 percent. In contrast, iNOS activity and expression are increased in failing hearts and may represent an alternative mechanism for nitric oxide production in heart failure due to ischemic disease.


Subject(s)
Humans , Male , Female , Middle Aged , Coronary Artery Disease , Gene Expression , Heart Failure , Coronary Angiography , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL